Coursera
  • 在線學位探索學士學位和碩士學位
  • MasterTrack™獲得碩士學位的學分
  • 大學證書通過研究生水平的學習,開拓您的職業生涯
尋找職業企業版面向大學
  • 瀏覽
  • 頂級課程
  • 登錄
  • 免費加入
    Coursera
    • 瀏覽
    • Exploratory Data Analysis

    篩選依據

    ''exploratory data analysis'的 316 個結果

    • Placeholder
      IBM Skills Network

      Exploratory Data Analysis for Machine Learning

      您將獲得的技能: Data Analysis, Machine Learning, Business Analysis, Exploratory Data Analysis, Feature Engineering, Bayesian Statistics, NoSQL, Probability Distribution, Basic Descriptive Statistics, Computer Programming, Correlation And Dependence, Data Visualization, Deep Learning, Estimation, Python Programming, Regression, SQL, Statistical Programming, Statistical Tests

      4.6

      (1.1k 條評論)

      Intermediate · Course · 1-3 Months

    • Placeholder
      Coursera Project Network

      Exploratory Data Analysis With Python and Pandas

      您將獲得的技能: Business Analysis, Computer Programming, Data Analysis, Data Visualization, Exploratory Data Analysis, Plot (Graphics), Probability & Statistics, Python Programming, Statistical Programming

      4.5

      (350 條評論)

      Beginner · Guided Project · Less Than 2 Hours

    • Placeholder
      Johns Hopkins University

      Exploratory Data Analysis

      您將獲得的技能: Data Analysis, Data Visualization Software, Exploratory Data Analysis, Software Visualization, Statistical Visualization, Business Analysis, Data Visualization, Plot (Graphics), Probability & Statistics

      4.7

      (6k 條評論)

      Mixed · Course · 1-4 Weeks

    • Placeholder
      MathWorks

      Exploratory Data Analysis with MATLAB

      您將獲得的技能: Business Analysis, Data Analysis, Exploratory Data Analysis, Probability & Statistics, Data Analysis Software, Mathematics, Matlab, Data Visualization, Plot (Graphics)

      4.8

      (768 條評論)

      Beginner · Course · 1-3 Months

    • Placeholder
      University of Michigan

      Exploratory Data Analysis for the Public Sector with ggplot

      您將獲得的技能: Data Visualization

      Intermediate · Course · 1-4 Weeks

    • Placeholder
      Coursera Project Network

      Exploratory Data Analysis

      您將獲得的技能: Basic Descriptive Statistics, Business Analysis, Data Analysis, Data Visualization, Exploratory Data Analysis, Probability & Statistics, Python Programming

      4.2

      (134 條評論)

      Intermediate · Guided Project · Less Than 2 Hours

    • Placeholder
      Placeholder
      University of Illinois at Urbana-Champaign

      Tools for Exploratory Data Analysis in Business

      您將獲得的技能: Data Analysis, Data Visualization, Business Analysis, Data Management, Exploratory Data Analysis, Probability & Statistics, Big Data, R Programming, Statistical Programming

      4.7

      (27 條評論)

      Beginner · Course · 1-4 Weeks

    • Placeholder
      Placeholder
      Coursera Project Network

      Exploratory Data Analysis in R

      您將獲得的技能: Business Analysis, Data Analysis, Exploratory Data Analysis, Probability & Statistics, R Programming, Statistical Programming

      4.4

      (10 條評論)

      Intermediate · Guided Project · Less Than 2 Hours

    • Placeholder
      Placeholder
      Coursera Project Network

      Exploratory Data Analysis with Seaborn

      您將獲得的技能: Business Analysis, Data Analysis, Data Visualization, Exploratory Data Analysis, Plot (Graphics), Probability & Statistics, Data Science, Machine Learning, Python Programming

      4.6

      (409 條評論)

      Intermediate · Guided Project · Less Than 2 Hours

    • Placeholder
      Placeholder
      Coursera Project Network

      Conducting Exploratory Data Analysis

      您將獲得的技能: Data Analysis

      Intermediate · Guided Project · Less Than 2 Hours

    • Placeholder
      Placeholder
      Coursera Project Network

      Exploratory Data Analysis with Textual Data in R / Quanteda

      您將獲得的技能: Computer Programming, Data Analysis, Data Mining, Machine Learning, Natural Language Processing, R Programming, Statistical Programming

      4.9

      (7 條評論)

      Beginner · Guided Project · Less Than 2 Hours

    • Placeholder
      Placeholder
      Google Cloud

      Exploratory Data Analysis Using AI Platform

      Intermediate · Project · Less Than 2 Hours

    與 exploratory data analysis 相關的搜索

    exploratory data analysis with python and pandas
    exploratory data analysis for machine learning
    exploratory data analysis with matlab
    exploratory data analysis with seaborn
    exploratory data analysis for the public sector with ggplot
    exploratory data analysis with textual data in r / quanteda
    exploratory data analysis in r
    exploratory data analysis using ai platform
    1234…27

    總之,這是我們最受歡迎的 exploratory data analysis 門課程中的 10 門

    • Exploratory Data Analysis for Machine Learning: IBM Skills Network
    • Exploratory Data Analysis With Python and Pandas: Coursera Project Network
    • Exploratory Data Analysis: Johns Hopkins University
    • Exploratory Data Analysis with MATLAB: MathWorks
    • Exploratory Data Analysis for the Public Sector with ggplot: University of Michigan
    • Exploratory Data Analysis: Coursera Project Network
    • Tools for Exploratory Data Analysis in Business: University of Illinois at Urbana-Champaign
    • Exploratory Data Analysis in R: Coursera Project Network
    • Exploratory Data Analysis with Seaborn: Coursera Project Network
    • Conducting Exploratory Data Analysis: Coursera Project Network

    您可以在 Probability And Statistics 中學到的技能

    R 語言程序設計(中文版) (19)
    推斷 (16)
    線性回歸 (12)
    統計分析 (12)
    統計推斷 (11)
    回歸分析 (10)
    生物統計學 (9)
    貝葉斯定理 (7)
    邏輯回歸 (7)
    概率分佈 (7)
    貝葉斯統計 (6)
    醫學統計 (6)

    關於 探索性數據分析 的常見問題

    • Exploratory data analysis (EDA) is an approach to data analysis used to investigate sets of data, summarize their characteristics, and figure out how to best work with data to get answers while providing a visual to help businesses, scientists, researchers, and analysts learn more from that data. Exploratory data analysis makes it easier to find patterns and anomalies in data, and it can be used to determine what the data reveals beyond modeling. It's useful as a step in creating sophisticated data models and analysis. EDA tools include clustering/dimension reduction techniques to create graphs, K-means clustering, and predictive modeling, including linear regression. There are four main types of exploratory data analysis, including univariate non-graphical, univariate graphical, multivariate nongraphical, and multivariate graphical. All of these types describe the data, but graphical exploratory data analysis provides a more complete picture created by the data.‎

    • If you're passionate about working with numbers and transforming them to tell a story that influences others, learning about exploratory data analysis can help you forge a career based on that passion. It's a solid start to jobs in data science, but you'll also gain a variety of related skills, including coding using Python and R, data cleansing, and predictive modeling. Beyond starting a new career or advancing your existing one, there are benefits for anyone who chooses to learn about exploratory data analysis, including solid problem-solving skills, the ability to find connections between data and real-world problems, and gaining useful tools to guide major decisions ranging from getting the most out of marketing campaigns to maximizing project executions to hiring key players for organizations.‎

    • If you're looking for a career in transforming large volumes of data into actionable advice and solutions, a career in exploratory data analytics could be your ideal path, particularly if you're passionate about using data to evaluate whether the statistical methods you intend to use for analyzing that data are the most effective options. This fast-growing field is in-demand, with skilled, knowledgeable exploratory data analysts among the most highly sought professionals across multiple industries. Exploratory data analysis is somewhat like solving puzzles, piecing data-driven insights together to help employers and clients make well-informed business decisions based on sound data that's been evaluated for assumptions, errors, and trends. You might work on Wall Street for a hedge fund or investment bank. You could work in healthcare, insurance, retail, or marketing, among other industries.‎

    • Online courses on Coursera give you the opportunity to do everything from gaining experience in fundamentals to earning professional certification. If you're new to the field, beginner courses like Exploratory Data Analysis with MATLAB can help you build a foundation in data analysis and data visualization. If you're looking to advance your skills, you might explore your options to gain professional certification through IBM's IBM Data Analyst offering. Or you could opt for a specialization, like the Data Science option from Johns Hopkins, which combines courses and applied learning to help you build firsthand knowledge and skills that you'll be able to apply in business settings.‎

    此常見問題解答內容僅供參考。建議學生多做研究,確保所追求的課程和其他證書符合他們的個人、專業和財務目標。
    其他可瀏覽的主題
    Placeholder
    艺术与人文
    338 課程
    Placeholder
    商务
    1095 課程
    Placeholder
    计算机科学
    668 課程
    Placeholder
    数据科学
    425 課程
    Placeholder
    信息技术
    145 課程
    Placeholder
    健康
    471 課程
    Placeholder
    数学和逻辑
    70 課程
    Placeholder
    个人发展
    137 課程
    Placeholder
    物理科学与工程
    413 課程
    Placeholder
    社会科学
    401 課程
    Placeholder
    语言学习
    150 課程

    Coursera Footer

    開拓職業生涯或促進職業發展

    • Google 數據分析師
    • Google 數字營銷和電子商務專業證書
    • Google IT 自動化與 Python 專業證書
    • Google IT 支持
    • Google 項目管理
    • Google UX 設計
    • 備考 Google Cloud 認證:雲架構師
    • IBM Cybersecurity Analyst
    • IBM 數據分析師
    • IBM 數據工程
    • IBM 數據科學
    • IBM 全棧雲開發人員
    • IBM Machine Learning
    • 直覺簿記
    • Meta Front-End Developer
    • DeepLearning.AI TensorFlow 開發者專業證書
    • SAS 程序員專業證書
    • 開啟您的職業生涯
    • 準備證書
    • 開拓職業生涯
    • 如何識別 Python 語法錯誤
    • 如何捕捉 Python 異常
    • 查看所有編程教程

    熱門課程和證書

    • 免費課程
    • 人工智能課程
    • 區塊鏈課程
    • 計算機科學課程
    • Cursos Gratis
    • 網絡安全課程
    • 數據分析課程
    • 數據科學課程
    • 英語口語課程
    • 全棧式網絡開發課程
    • Google 課程
    • 人力資源課程
    • IT 課程
    • 學習英語課程
    • Microsoft Excel 課程
    • 產品管理課程
    • 項目管理課程
    • Python 課程
    • SQL 課程
    • 敏捷證書
    • CAPM 證書
    • CompTIA A+ 證書
    • 數據分析證書
    • Scrum Master 證書
    • 查看全部課程

    熱門收藏和文章

    • 您可以在一天內完成的免費在線課程
    • 熱門免費課程
    • 商務工作
    • 網絡安全工作
    • 入門 IT 工作
    • 數據分析師面試問題
    • 數據分析工程
    • 如何成為數據分析師
    • 如何成為項目經理
    • IT 技能
    • 項目經理面試問題
    • Python 程序設計技能
    • 面試中的優勢和劣勢
    • 數據分析師是做什麼的
    • 軟件工程師是做什麼的
    • 什麼是數據工程師
    • 什麼是數據科學家
    • 什麼是產品設計師
    • 什麼是 Scrum Master
    • 什麼是用戶體驗研究員
    • 如何獲得 PMP 證書
    • PMI 證書
    • 熱門網絡安全證書
    • 熱門 SQL 證書
    • 閱讀所有 Coursera 文章

    在線獲得學位或證書

    • Google 專業證書
    • 專業證書
    • 查看所有證書
    • 學士學位
    • 碩士學位
    • Computer Science Degrees
    • Data Science Degrees
    • MBA 和商學學位
    • 數據分析師學位
    • 公共衛生學位
    • 社會科學學位
    • 管理學位
    • 文學學位與理學學位
    • 什麼是學士學位?
    • 要培養的 11 個良好的學習習慣
    • 如何撰寫推薦信
    • 擁有商學學位可以從事的 10 個熱門工作
    • 計算機科學碩士值得讀嗎?
    • 查看所有學位計劃
    • Coursera 印度
    • Coursera 英國
    • Coursera 墨西哥

    Coursera

    • 關於
    • 我們提供的內容
    • 管理團隊
    • 工作機會
    • 目錄
    • Coursera Plus
    • 專業證書
    • MasterTrack® 證書
    • 學位
    • 企業版
    • 政府版
    • 面向校園
    • 成為合作夥伴
    • 新冠疫情響應

    社區

    • 學生
    • 合作夥伴
    • Beta 測試人員
    • 專業譯員
    • 博客
    • 技術博客
    • 教學中心

    更多

    • 媒體
    • 投資者
    • 條款
    • 隱私
    • 幫助
    • 內容訪問
    • 聯繫我們
    • 文章
    • 目錄
    • 附屬公司
    • 現代奴隸制聲明
    隨時隨地學習
    Placeholder
    Placeholder
    Placeholder
    © 2023 Coursera Inc.保留所有權利。
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder