Chevron Left
返回到 Cloud Computing Applications, Part 2: Big Data and Applications in the Cloud

學生對 伊利诺伊大学香槟分校 提供的 Cloud Computing Applications, Part 2: Big Data and Applications in the Cloud 的評價和反饋

4.3
322 個評分

課程概述

Welcome to the Cloud Computing Applications course, the second part of a two-course series designed to give you a comprehensive view on the world of Cloud Computing and Big Data! In this second course we continue Cloud Computing Applications by exploring how the Cloud opens up data analytics of huge volumes of data that are static or streamed at high velocity and represent an enormous variety of information. Cloud applications and data analytics represent a disruptive change in the ways that society is informed by, and uses information. We start the first week by introducing some major systems for data analysis including Spark and the major frameworks and distributions of analytics applications including Hortonworks, Cloudera, and MapR. By the middle of week one we introduce the HDFS distributed and robust file system that is used in many applications like Hadoop and finish week one by exploring the powerful MapReduce programming model and how distributed operating systems like YARN and Mesos support a flexible and scalable environment for Big Data analytics. In week two, our course introduces large scale data storage and the difficulties and problems of consensus in enormous stores that use quantities of processors, memories and disks. We discuss eventual consistency, ACID, and BASE and the consensus algorithms used in data centers including Paxos and Zookeeper. Our course presents Distributed Key-Value Stores and in memory databases like Redis used in data centers for performance. Next we present NOSQL Databases. We visit HBase, the scalable, low latency database that supports database operations in applications that use Hadoop. Then again we show how Spark SQL can program SQL queries on huge data. We finish up week two with a presentation on Distributed Publish/Subscribe systems using Kafka, a distributed log messaging system that is finding wide use in connecting Big Data and streaming applications together to form complex systems. Week three moves to fast data real-time streaming and introduces Storm technology that is used widely in industries such as Yahoo. We continue with Spark Streaming, Lambda and Kappa architectures, and a presentation of the Streaming Ecosystem. Week four focuses on Graph Processing, Machine Learning, and Deep Learning. We introduce the ideas of graph processing and present Pregel, Giraph, and Spark GraphX. Then we move to machine learning with examples from Mahout and Spark. Kmeans, Naive Bayes, and fpm are given as examples. Spark ML and Mllib continue the theme of programmability and application construction. The last topic we cover in week four introduces Deep Learning technologies including Theano, Tensor Flow, CNTK, MXnet, and Caffe on Spark....

熱門審閱

UN

2018年4月9日

My understanding of Big Data technologies was really enhanced by this course. I have decided to pursue more of these underlying technologies after this course. Good job

JA

2019年9月29日

Very Useful Course. Course material is massive and well prepared for the modern industry demands.

篩選依據:

1 - Cloud Computing Applications, Part 2: Big Data and Applications in the Cloud 的 25 個評論(共 51 個)

創建者 Ak D

2017年9月2日

創建者 Patrick S

2017年6月19日

創建者 Ning Z

2020年10月28日

創建者 Yaron K

2017年8月27日

創建者 Uche N

2018年4月10日

創建者 Fillipe d S S

2016年11月13日

創建者 André L D d S J

2020年8月5日

創建者 Javed A

2019年9月30日

創建者 Mahendra P S

2017年11月27日

創建者 Kedar G

2020年7月15日

創建者 uzair n

2016年10月31日

創建者 Eduardo B L

2018年6月12日

創建者 Sudhanshu S

2016年12月18日

創建者 Turdaliev N K

2016年10月29日

創建者 Ruiwen W

2020年8月14日

創建者 Sreedevi R N

2020年8月6日

創建者 shashank

2018年11月13日

創建者 Dario F B

2020年11月10日

創建者 Joseph K

2019年3月30日

創建者 Murat K

2017年7月5日

創建者 Sarvesh G

2021年1月21日

創建者 KimManSoo

2018年10月5日

創建者 Raptis D

2016年10月15日

創建者 Shiva B

2018年3月19日

創建者 Birhanu D

2020年2月23日