Chevron Left
返回到 Probabilistic Deep Learning with TensorFlow 2

學生對 伦敦帝国学院 提供的 Probabilistic Deep Learning with TensorFlow 2 的評價和反饋

4.7
86 個評分

課程概述

Welcome to this course on Probabilistic Deep Learning with TensorFlow! This course builds on the foundational concepts and skills for TensorFlow taught in the first two courses in this specialisation, and focuses on the probabilistic approach to deep learning. This is an increasingly important area of deep learning that aims to quantify the noise and uncertainty that is often present in real world datasets. This is a crucial aspect when using deep learning models in applications such as autonomous vehicles or medical diagnoses; we need the model to know what it doesn't know. You will learn how to develop probabilistic models with TensorFlow, making particular use of the TensorFlow Probability library, which is designed to make it easy to combine probabilistic models with deep learning. As such, this course can also be viewed as an introduction to the TensorFlow Probability library. You will learn how probability distributions can be represented and incorporated into deep learning models in TensorFlow, including Bayesian neural networks, normalising flows and variational autoencoders. You will learn how to develop models for uncertainty quantification, as well as generative models that can create new samples similar to those in the dataset, such as images of celebrity faces. You will put concepts that you learn about into practice straight away in practical, hands-on coding tutorials, which you will be guided through by a graduate teaching assistant. In addition there is a series of automatically graded programming assignments for you to consolidate your skills. At the end of the course, you will bring many of the concepts together in a Capstone Project, where you will develop a variational autoencoder algorithm to produce a generative model of a synthetic image dataset that you will create yourself. This course follows on from the previous two courses in the specialisation, Getting Started with TensorFlow 2 and Customising Your Models with TensorFlow 2. The additional prerequisite knowledge required in order to be successful in this course is a solid foundation in probability and statistics. In particular, it is assumed that you are familiar with standard probability distributions, probability density functions, and concepts such as maximum likelihood estimation, change of variables formula for random variables, and the evidence lower bound (ELBO) used in variational inference....

熱門審閱

BB

2021年12月16日

This has been a great course! The lecture videos are clear, concise, and to the point. The assignments are perfectly structured and the feedbacks from assignments are super helpful.

MD

2021年7月26日

A really valuable learning experience. With these courses, I now feel confident that I can apply the skills from the Deep Learning Specialization in a practical setting.

篩選依據:

1 - Probabilistic Deep Learning with TensorFlow 2 的 25 個評論(共 34 個)

創建者 Asad K

2020年12月10日

創建者 Nathan W

2021年4月16日

創建者 Carl T

2020年10月26日

創建者 Fabio K

2020年12月29日

創建者 Omkar K

2021年3月9日

創建者 Chung-I L

2021年4月1日

創建者 Max K

2021年1月31日

創建者 mgbacher

2021年5月19日

創建者 Nghĩa P

2022年3月22日

創建者 Marios K

2020年11月20日

創建者 Manuel B

2021年11月27日

創建者 Kanji O

2021年4月9日

創建者 Rafael O

2021年2月28日

創建者 Martin F

2021年12月14日

創建者 Selva K R

2021年4月8日

創建者 Steven C S

2021年10月11日

創建者 Maxim V

2021年4月7日

創建者 Ajay A

2021年12月13日

創建者 Anubhav T

2021年8月21日

創建者 Rajendra A

2021年7月16日

創建者 Behnam

2021年12月17日

創建者 Michael D

2021年7月27日

創建者 Yonatan F

2022年9月14日

創建者 Vinh D V

2022年7月2日

創建者 fan c

2021年3月28日