Cleaning and Exploring Big Data using PySpark
59 個評分

4,417 人已註冊
Learn how to clean your big dataset in PySpark
Learn how to explore big dataset in PySpark
Learn how to create visualizations from big dataset loaded in PySpark
59 個評分
4,417 人已註冊
Learn how to clean your big dataset in PySpark
Learn how to explore big dataset in PySpark
Learn how to create visualizations from big dataset loaded in PySpark
By the end of this project, you will learn how to clean, explore and visualize big data using PySpark. You will be using an open source dataset containing information on all the water wells in Tanzania. I will teach you various ways to clean and explore your big data in PySpark such as changing column’s data type, renaming categories with low frequency in character columns and imputing missing values in numerical columns. I will also teach you ways to visualize your data by intelligently converting Spark dataframe to Pandas dataframe. Cleaning and exploring big data in PySpark is quite different from Python due to the distributed nature of Spark dataframes. This guided project will dive deep into various ways to clean and explore your data loaded in PySpark. Data preprocessing in big data analysis is a crucial step and one should learn about it before building any big data machine learning model. Note: You should have a Gmail account which you will use to sign into Google Colab. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Cleaning
Python Programming
Data Visualization (DataViz)
Apache Spark
Exploratory Data Analysis
在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:
Install Spark on Google Colab and load datasets in PySpark
Change column datatype, remove whitespaces and drop duplicates
Remove columns with Null values higher than a threshold
Group, aggregate and create pivot tables
Rename categories and impute missing numeric values
Create visualizations to gather insights
您的工作空間就是瀏覽器中的雲桌面,無需下載
在分屏視頻中,您的授課教師會為您提供分步指導
由 NN 提供
2022年4月22日use case could be explained a little better, before actually going to the code
由 SR 提供
2020年12月14日More theory behind the functions used and concepts behind spark and how it works in a distributed way would've been more benefitting. Overall it was a worthy course.
由 JA 提供
2022年3月23日fast and simple explanation about ow to start to work with Spak on Colab
由 AA 提供
2021年8月21日Practical walk through of basic PySpark operations. Great quick-start to using Pyspark for data analysis
購買指導項目後,您將獲得完成指導項目所需的一切,包括通過 Web 瀏覽器訪問云桌面工作空間,工作空間中包含您需要了解的文件和軟件,以及特定領域的專家提供的分步視頻說明。
由於您的工作空間包含適合筆記本電腦或台式計算機使用的雲桌面,因此指導項目不在移動設備上提供。
指導項目授課教師是特定領域的專家,他們在項目的技能、工具或領域方面經驗豐富,並且熱衷於分享自己的知識以影響全球數百萬的學生。
您可以從指導項目中下載並保留您創建的任何文件。為此,您可以在訪問云桌面時使用‘文件瀏覽器’功能。
指導項目不符合退款條件。 請查看我們完整的退款政策。
指導項目不提供助學金。
指導項目不支持旁聽。
您可在頁面頂部點按此指導項目的經驗級別,查看任何知識先決條件。對於指導項目的每個級別,您的授課教師會逐步為您提供指導。
是,您可以在瀏覽器的雲桌面中獲得完成指導項目所需的一切。
您可以直接在瀏覽器中於分屏環境下完成任務,以此從做中學。在屏幕的左側,您將在工作空間中完成任務。在屏幕的右側,您將看到有授課教師逐步指導您完成項目。
還有其他問題嗎?請訪問 學生幫助中心。