Dimensionality Reduction using an Autoencoder in Python

4.6

94 個評分

提供方

3,445 人已註冊

在此指導項目中,您將:
60 minutes
中級
無需下載
分屏視頻
英語(English)
僅限桌面

In this 1-hour long project, you will learn how to generate your own high-dimensional dummy dataset. You will then learn how to preprocess it effectively before training a baseline PCA model. You will learn the theory behind the autoencoder, and how to train one in scikit-learn. You will also learn how to extract the encoder portion of it to reduce dimensionality of your input data. In the course of this project, you will also be exposed to some basic clustering strength metrics. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培養的技能

  • Dimensionality Reduction

  • Artificial Neural Network

  • Machine Learning

  • clustering

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

授課教師

審閱

來自DIMENSIONALITY REDUCTION USING AN AUTOENCODER IN PYTHON 的熱門評論

查看所有評論

常見問題