Image Compression and Generation using Variational Autoencoders in Python

4.7

71 個評分

提供方

3,326 人已註冊

在此指導項目中,您將:
90 minutes
中級
無需下載
分屏視頻
英語(English)
僅限桌面

In this 1-hour long project, you will be introduced to the Variational Autoencoder. We will discuss some basic theory behind this model, and move on to creating a machine learning project based on this architecture. Our data comprises 60.000 characters from a dataset of fonts. We will train a variational autoencoder that will be capable of compressing this character font data from 2500 dimensions down to 32 dimensions. This same model will be able to then reconstruct its original input with high fidelity. The true advantage of the variational autoencoder is its ability to create new outputs that come from distributions that closely follow its training data: we can output characters in brand new fonts. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培養的技能

  • Image Compression

  • Machine Learning

  • Vision

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

授課教師

審閱

來自IMAGE COMPRESSION AND GENERATION USING VARIATIONAL AUTOENCODERS IN PYTHON的熱門評論

查看所有評論

常見問題