Scikit-Learn to Solve Regression Machine Learning Problems

提供方
在此指導項目中,您將:

Train machine learning regression models using Scikit-Learn library 

Understand the theory and intuition behind XG-Boost regression model

Evaluate several trained regression models performance using various Key Performance Indicators (KPIs)

2 hours
初級
無需下載
分屏視頻
英語(English)
僅限桌面

Hello everyone and welcome to this new hands-on project on Scikit-Learn for solving machine learning regression problems. In this project, we will learn how to build and train regression models using Scikit-Learn library. Scikit-learn is a free machine learning library developed for python. Scikit-learn offers several algorithms for classification, regression, and clustering. Several famous machine learning models are included such as support vector machines, random forests, gradient boosting, and k-means. This project is practical and directly applicable to many industries. You can add this project to your portfolio of projects which is essential for your next job interview.

您要培養的技能

  • Data Analysis

  • Machine Learning (ML) Algorithms

  • Machine Learning

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

  1. Understand the Problem Statement

  2. Import Key Libraries and Datasets

  3. Practice Opportunity #1 [Optional]

  4. Perform Data Visualization

  5. Perform Feature Engineering

  6. Understand XG-Boost Algorithm

  7. Train an XG-Boost Regression Model

  8. Evaluate Trained Model Performance

  9. Practice Opportunity #2 [Optional]

  10. Final Capstone Project

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

常見問題

購買指導項目後,您將獲得完成指導項目所需的一切,包括通過 Web 瀏覽器訪問云桌面工作空間,工作空間中包含您需要了解的文件和軟件,以及特定領域的專家提供的分步視頻說明。

由於您的工作空間包含適合筆記本電腦或台式計算機使用的雲桌面,因此指導項目不在移動設備上提供。

指導項目授課教師是特定領域的專家,他們在項目的技能、工具或領域方面經驗豐富,並且熱衷於分享自己的知識以影響全球數百萬的學生。

您可以從指導項目中下載並保留您創建的任何文件。為此,您可以在訪問云桌面時使用‘文件瀏覽器’功能。

指導項目不符合退款條件。 請查看我們完整的退款政策

指導項目不提供助學金。

指導項目不支持旁聽。

您可在頁面頂部點按此指導項目的經驗級別,查看任何知識先決條件。對於指導項目的每個級別,您的授課教師會逐步為您提供指導。

是,您可以在瀏覽器的雲桌面中獲得完成指導項目所需的一切。

您可以直接在瀏覽器中於分屏環境下完成任務,以此從做中學。在屏幕的左側,您將在工作空間中完成任務。在屏幕的右側,您將看到有授課教師逐步指導您完成項目。