TensorFlow Serving with Docker for Model Deployment
55 個評分

4,730 人已註冊
Train and export TensorFlow Models for text classification
Serve and deploy models with TensorFlow Serving and Docker
Perform model inference with gRPC and REST endpoints
55 個評分
4,730 人已註冊
Train and export TensorFlow Models for text classification
Serve and deploy models with TensorFlow Serving and Docker
Perform model inference with gRPC and REST endpoints
This is a hands-on, guided project on deploying deep learning models using TensorFlow Serving with Docker. In this 1.5 hour long project, you will train and export TensorFlow models for text classification, learn how to deploy models with TF Serving and Docker in 90 seconds, and build simple gRPC and REST-based clients in Python for model inference. With the worldwide adoption of machine learning and AI by organizations, it is becoming increasingly important for data scientists and machine learning engineers to know how to deploy models to production. While DevOps groups are fantastic at scaling applications, they are not the experts in ML ecosystems such as TensorFlow and PyTorch. This guided project gives learners a solid, real-world foundation of pushing your TensorFlow models from development to production in no time! Prerequisites: In order to successfully complete this project, you should be familiar with Python, and have prior experience with building models with Keras or TensorFlow. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Deep Learning
Docker
TensorFlow Serving
Tensorflow
model deployment
在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:
Introduction and Demo Deployment
Load and Preprocess the Amazon Fine Foods Review Data
Build Text Classification Model using Keras and TensorFlow Hub
Define Training Procedure
Train and Export Model as Protobuf
Test Model
TensorFlow Serving with Docker
Setup a REST Client to Perform Model Predictions
Setup a gRPC Client to Perform Model Predictions
Versioning with TensorFlow Serving
您的工作空間就是瀏覽器中的雲桌面,無需下載
在分屏視頻中,您的授課教師會為您提供分步指導
購買指導項目後,您將獲得完成指導項目所需的一切,包括通過 Web 瀏覽器訪問云桌面工作空間,工作空間中包含您需要了解的文件和軟件,以及特定領域的專家提供的分步視頻說明。
由於您的工作空間包含適合筆記本電腦或台式計算機使用的雲桌面,因此指導項目不在移動設備上提供。
指導項目授課教師是特定領域的專家,他們在項目的技能、工具或領域方面經驗豐富,並且熱衷於分享自己的知識以影響全球數百萬的學生。
您可以從指導項目中下載並保留您創建的任何文件。為此,您可以在訪問云桌面時使用‘文件瀏覽器’功能。
指導項目不符合退款條件。 請查看我們完整的退款政策。
指導項目不提供助學金。
指導項目不支持旁聽。
您可在頁面頂部點按此指導項目的經驗級別,查看任何知識先決條件。對於指導項目的每個級別,您的授課教師會逐步為您提供指導。
是,您可以在瀏覽器的雲桌面中獲得完成指導項目所需的一切。
您可以直接在瀏覽器中於分屏環境下完成任務,以此從做中學。在屏幕的左側,您將在工作空間中完成任務。在屏幕的右側,您將看到有授課教師逐步指導您完成項目。
還有其他問題嗎?請訪問 學生幫助中心。