Chevron Left
返回到 Fundamentals of Reinforcement Learning

學生對 阿尔伯塔大学 提供的 Fundamentals of Reinforcement Learning 的評價和反饋

4.8
2,499 個評分

課程概述

Reinforcement Learning is a subfield of Machine Learning, but is also a general purpose formalism for automated decision-making and AI. This course introduces you to statistical learning techniques where an agent explicitly takes actions and interacts with the world. Understanding the importance and challenges of learning agents that make decisions is of vital importance today, with more and more companies interested in interactive agents and intelligent decision-making. This course introduces you to the fundamentals of Reinforcement Learning. When you finish this course, you will: - Formalize problems as Markov Decision Processes - Understand basic exploration methods and the exploration/exploitation tradeoff - Understand value functions, as a general-purpose tool for optimal decision-making - Know how to implement dynamic programming as an efficient solution approach to an industrial control problem This course teaches you the key concepts of Reinforcement Learning, underlying classic and modern algorithms in RL. After completing this course, you will be able to start using RL for real problems, where you have or can specify the MDP. This is the first course of the Reinforcement Learning Specialization....

熱門審閱

AT

2020年7月6日

An excellent introduction to Reinforcement Learning, accompanied by a well-organized & informative handbook. I definitely recommend this course to have a strong foundation in Reinforcement Learning.

HT

2020年4月7日

This course is one of the best I've learned so far in coursera. The explanations are clear and concise enough. It took a while for me to understand Bellman equation but when I did, it felt amazing!

篩選依據:

551 - Fundamentals of Reinforcement Learning 的 575 個評論(共 600 個)

創建者 Leo M

2022年8月23日

It was very interesting. However, I found that a few of the quiz questions were not super clear.

創建者 Aze A

2020年12月10日

I enjoyed the course, especially week 3 and week 4 materials. I would have like more examples.

創建者 Muzammil H R

2022年9月25日

In the programming assignments, there should be access to libraries of agent environment etc.

創建者 Fateme S

2022年7月28日

Thanks for the amazing course! It would be great if we had access to the lecture slides.

創建者 Nga T

2021年12月27日

I dont understand the two games in this course. I have no idea how to mark them as done.

創建者 Daxkumar J

2020年2月3日

this is a basic course of the RL and its very great to learn with University Alberta.

創建者 Simon N

2020年12月20日

Very good introduction. Helps you get through Sutton and Barto (free pdf supplied).

創建者 Anirudh B

2020年5月13日

Needs more coding implementation according to me. But overall theory was good.

創建者 Zia M U D

2020年5月4日

Tutors are fantastic, but should also focus on programming not just on theory.

創建者 Mohamed H

2020年2月14日

I think it will be perfect if the board and pen are used to drive equations.

創建者 Maxim V

2020年1月6日

Good content, but most of it is in the textbook, not so much in the videos.

創建者 Eli K

2021年10月31日

Programming exercises teach the material a lot better than quizzes

創建者 Sriram S

2020年4月17日

The course was cool but needed some more programming assignments.

創建者 Francisco R

2020年6月15日

Excellent in terms of learning the foundations of RL.

創建者 袁之日

2021年3月29日

There could be more coding examples for each module.

創建者 Jeroen v H

2019年10月17日

Quite theoretical. But a good base of the concepts.

創建者 rupesh s

2022年10月6日

More elaboration on the maths part will help.

創建者 Luis G B

2022年11月7日

Good, but it just introduce the fundamentals

創建者 Husam D

2019年11月4日

I wished there were more coding assignments

創建者 Shahram E

2020年6月25日

c

o

u

l

d

b

e

w

i

t

h

m

o

r

e

e

x

a

m

p

l

e

a

n

d

t

e

a

c

h

b

y

c

o

d

i

n

g

創建者 Matin S

2022年1月13日

it was a bit hard in code assignments

創建者 Mark R

2019年10月26日

Interesting course.

創建者 Arnaud 3

2021年10月10日

good course

創建者 Abhishek U

2022年1月21日

Great

創建者 배병선

2019年10月31日

Good!