Chevron Left
返回到 Prediction and Control with Function Approximation

學生對 阿尔伯塔大学 提供的 Prediction and Control with Function Approximation 的評價和反饋

4.8
748 個評分

課程概述

In this course, you will learn how to solve problems with large, high-dimensional, and potentially infinite state spaces. You will see that estimating value functions can be cast as a supervised learning problem---function approximation---allowing you to build agents that carefully balance generalization and discrimination in order to maximize reward. We will begin this journey by investigating how our policy evaluation or prediction methods like Monte Carlo and TD can be extended to the function approximation setting. You will learn about feature construction techniques for RL, and representation learning via neural networks and backprop. We conclude this course with a deep-dive into policy gradient methods; a way to learn policies directly without learning a value function. In this course you will solve two continuous-state control tasks and investigate the benefits of policy gradient methods in a continuous-action environment. Prerequisites: This course strongly builds on the fundamentals of Courses 1 and 2, and learners should have completed these before starting this course. Learners should also be comfortable with probabilities & expectations, basic linear algebra, basic calculus, Python 3.0 (at least 1 year), and implementing algorithms from pseudocode. By the end of this course, you will be able to: -Understand how to use supervised learning approaches to approximate value functions -Understand objectives for prediction (value estimation) under function approximation -Implement TD with function approximation (state aggregation), on an environment with an infinite state space (continuous state space) -Understand fixed basis and neural network approaches to feature construction -Implement TD with neural network function approximation in a continuous state environment -Understand new difficulties in exploration when moving to function approximation -Contrast discounted problem formulations for control versus an average reward problem formulation -Implement expected Sarsa and Q-learning with function approximation on a continuous state control task -Understand objectives for directly estimating policies (policy gradient objectives) -Implement a policy gradient method (called Actor-Critic) on a discrete state environment...

熱門審閱

WP

2020年4月11日

Difficult but excellent and impressing. Human being is incredible creating such ideas. This course shows a way to the state when all such ingenious ideas will be created by self learning algorithms.

AC

2019年12月1日

Well peaced and thoughtfully explained course. Highly recommended for anyone willing to set solid grounding in Reinforcement Learning. Thank you Coursera and Univ. of Alberta for the masterclass.

篩選依據:

1 - Prediction and Control with Function Approximation 的 25 個評論(共 133 個)

創建者 George G

2020年2月28日

創建者 Neil H

2021年11月3日

創建者 Mukund C

2020年3月27日

創建者 Navid H

2019年10月16日

創建者 Maxim V

2020年1月23日

創建者 Arthur O

2020年10月9日

創建者 Maximiliano B

2020年3月31日

創建者 D. R

2019年12月31日

創建者 Mark J

2019年10月22日

創建者 Ian W

2021年6月17日

創建者 Julien T

2019年11月12日

創建者 Gordon L W C

2020年3月23日

創建者 Walter O A

2019年12月9日

創建者 Stefano P

2020年5月19日

創建者 Sebastian P B

2019年12月2日

創建者 Zhang d

2020年5月6日

創建者 Jesse W

2020年7月29日

創建者 Guilherme V

2020年11月20日

創建者 Tobias L

2020年10月14日

創建者 Alvaro M A

2020年4月3日

創建者 Surya K

2020年4月30日

創建者 César S

2021年8月8日

創建者 Lim G

2020年5月10日

創建者 Thomas G

2020年4月21日

創建者 Mateusz K

2019年10月29日